Worksheet for 2021-10-27

Conceptual questions

Question 1. Let C be an oriented curve, and $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ a vector field. The "work" line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ can be rewritten as

$$
\int_{C} P(x, y) \mathrm{d} x+\int_{C} Q(x, y) \mathrm{d} y
$$

or, letting \mathbf{T} denote the unit tangent along C, as

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} \mathrm{~d} s
$$

But we talked before about how $\mathrm{d} x, \mathrm{~d} y$ care about the orientation of C, but $\mathrm{d} s$ does not-so what gives?

Computations

Problem 1. Let h be any (nice) single-variable function, and define

$$
\mathbf{F}=\left\langle x h\left(x^{2}+y^{2}\right), y h\left(x^{2}+y^{2}\right)\right\rangle .
$$

(a) Show that \mathbf{F} is conservative via differentiation.
(b) Let g denote an antiderivative of h (any nice single-variable function has an antiderivative-even if you can't write it down!). Show that \mathbf{F} is conservative by exhibiting a function f in terms of g such that $\nabla f=\mathbf{F}$.
(c) Let $h(t)=-t^{-3 / 2}$. The \mathbf{F} that results is very common in physics (though in 3 dimensions rather than 2). However, only one of the preceding two arguments is valid for showing \mathbf{F} is conservative on its entire domain-which one, and why?
Problem 2. Consider the vector field

$$
\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

(a) Let C be the circle $x^{2}+y^{2}=1$ traversed once counterclockwise, starting and ending at $(1,0)$. Compute

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

(b) Find a function f such that $\nabla f=\mathbf{F}$. How does the domain of your f compare to the domain of \mathbf{F} ?
(c) Is it possible to find a function f in part (b) that is defined on the entire circle C from part (a)?
(d) Let L be the path that starts at $(1,1)$, goes in a straight line to $(-2,0)$, and then goes in another straight line ending at $(3,-3)$. Compute

$$
\int_{L} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} .
$$

